2,274 research outputs found

    Design, Synthesis and Sustainable Applications of Animal Protein-Based Thermoset Polymers and Covalent Organic Frameworks

    Get PDF
    Extensive research has been undertaken in recent times on finding suitable, alternative, non-feed and non-fertilizer applications for proteinaceous materials in the animal rendering industry. In this regard, use of such proteins to derive plastics, especially thermoplastics and derived composites, has emerged as a potentially acceptable choice. However, the widespread use of such proteins for aforementioned applications is limited by their poor mechanical properties, high moisture absorption and their inherent odor. In this study, we have engineered, for the first time, high-strength, toughened thermoset polymers from proteinaceous materials obtained from the rendering industry so that they can be employed in high performance applications, such as in the automotive sector. However, the lack of compatibility between protein molecules and organic resins could not be ignored. Hence, in this study, we have also solved this problem by utilizing waterborne polyurethane as resins to react with protein molecules and form covalent-bonded interconnected hybrid polymers. To overcome the lack of compatibility, water soluble epoxy resin was also studied to crosslink with animal protein molecules. Recycling of epoxy resin-based composites has widely gained attention among researchers and environmentalists as the major waste processing method for such composites is landfilling, which requires large areas of waste land. While alternative recycling pathways such as mechanical, pyrolysis and fluidized bed have been achieved, all such pathways have either been undertaken at a small scale, are highly energy-intensive, or are detrimental to the environment through other means. Here, we present a new self-healing, repairable, and recyclable epoxy matrix with extendable usage time as well as increased life cycles. Moreover, urethane chain was introduced into the epoxy matrix as it helped achieve tunable, varying mechanical properties, with the copolymer possessing properties of both polyurethane and epoxy. To understand the art of molecule architecture, an easy method to prepare graphitic material from synthesized polymer was described in this study. Polyazomethine was synthesized, activated at high temperature, referred to as nitrogen-doped carbon (NC) materials, and then used to purify water. TGA results directed the choice of annealing temperature. Raman spectra confirmed that the material was indeed graphite-similar, showing G and D bands at 1584 cm-1 and 1337 cm-1 respectively. Adsorption experiments and BET surface area measurements revealed that temperature of 750Ā°C or higher was efficient for annealing the material

    A Novel Frequency Based Current-to-Digital Converter with Programmable Dynamic Range

    Get PDF
    This work describes a novel frequency based Current to Digital converter, which would be fully realizable on a single chip. Biological systems make use of delay line techniques to compute many things critical to the life of an animal. Seeking to build up such a system, we are adapting the auditory localization circuit found in barn owls to detect and compute the magnitude of an input current. The increasing drive to produce ultra low-power circuits necessitates the use of very small currents. Frequently these currents need to accurately measured, but current solutions typically involve off-chip measurements. These are usually slow, and moving a current off chip increases noise to the system. Moving a system such as this completely on chip will allow for precise measurement and control of bias currents, and it will allow for better compensation of some common transistor mismatch issues. This project affords an extremely low power (100s nW) converter technology that is also very space efficient. The converter is completely asynchronous which yields ultra-low power standby operation [1]

    A Study on Recent Developments and Issues with Obstacle Detection Systems for Automated Vehicles

    Get PDF
    This paper reviews current developments and discusses some critical issues with obstacle detection systems for automated vehicles. The concept of autonomous driving is the driver towards future mobility. Obstacle detection systems play a crucial role in implementing and deploying autonomous driving on our roads and city streets. The current review looks at technology and existing systems for obstacle detection. Specifically, we look at the performance of LIDAR, RADAR, vision cameras, ultrasonic sensors, and IR and review their capabilities and behaviour in a number of different situations: during daytime, at night, in extreme weather conditions, in urban areas, in the presence of smooths surfaces, in situations where emergency service vehicles need to be detected and recognised, and in situations where potholes need to be observed and measured. It is suggested that combining different technologies for obstacle detection gives a more accurate representation of the driving environment. In particular, when looking at technological solutions for obstacle detection in extreme weather conditions (rain, snow, fog), and in some specific situations in urban areas (shadows, reflections, potholes, insufficient illumination), although already quite advanced, the current developments appear to be not sophisticated enough to guarantee 100% precision and accuracy, hence further valiant effort is needed
    • ā€¦
    corecore